First Year Syllabus
Department of Physics

Four Year B.Sc Honours Course
Effective from the Session : 2013–2014
National University
Subject: Physics
Syllabus for Four Year B. Sc Honours Course
Effective from the Session: 2013-2014

Year wise Papers and marks distribution

FIRST YEAR

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>212701</td>
<td>Mechanics</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>212703</td>
<td>Properties of Matter, Waves & Oscillations</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>212705</td>
<td>Heat, Thermodynamics and Radiation</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>212706</td>
<td>Physics Practical-I</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>213709</td>
<td>Fundamentals of Mathematics</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>213711</td>
<td>Calculus-I</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>212807</td>
<td>Chemistry-I</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>212808</td>
<td>Chemistry-I Practical</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>213607</td>
<td>or Introduction to Statistics</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>213608</td>
<td>Statistics Practical-I</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>211501</td>
<td>History of the Emergence of Independent Bangladesh</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Total=</td>
<td></td>
<td>700</td>
<td>28</td>
</tr>
</tbody>
</table>
Detailed Syllabus

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Marks: 75</th>
<th>Credits: 3</th>
<th>Class Hours: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>Mechanics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Vector Algebra**: Vector and scalar quantities; Vectors and their components, Vector addition and subtraction, Scalar and vector triple products, scalar and vector fields, Vector differentiation and integration, Gradient, Divergence and Curl and their physical significance, Gauss's divergence theorem, Green's theorem and Stoke's theorem, Polar, Spherical and Cylindrical co-ordinates.

2. **Concept of Measurement**: Different Measurement units, International system of units, Origin of Length mass and time, Conversion of units from one system to another.

3. **Particles Motion in one dimension**: Concept of motion and frame of reference, Position and displacement, Average velocity and average speed, Instantaneous velocity and speed, Acceleration, Constant acceleration, Equations for motion with constant acceleration, Free-fall acceleration, Equation for free-fall acceleration, Particles of physics and basic structure of atoms and nuclear.

4. **Particles Motion in Two and Three Dimensions**: Position and displacement using vectors, Velocity and average velocity, Acceleration and average acceleration, Equation of motion using vector, Projectile motion, Uniform circular motion.

5. **Force and Motion**: Newton's laws of motion and their applications, Concept of mass, Force and weight, Frictional forces and Properties of friction, Drag force and terminal speed, Forces of nature.

7. **System of Particles**: Center of mass of systems of particles, Center of mass of rigid bodies, Linear momentum of a particle, Linear momentum of a system of particles, Conservation of linear momentum for a system of particles.

8. **Collisions of Bodies**: Collisions and its classification, Impulse and linear momentum, Elastic and inelastic collision in one dimension, Motions of the center of mass of colliding bodies.

9. **Rotational Kinematics**: Translational and Rotational motion, Angular Position, Angular displacement, Angular Velocity and angular acceleration, Rotation with constant angular acceleration, Relation between linear and angular kinematics of a particles in circular motion.

10. **Rotational Dynamics**: Torque and angular momentum and their relation, Kinetic energy of rotation and rotational inertia (moment of inertia), Combined Translational and rotational motion of a rigid body, Parallel and perpendicular axes theorems of moment of inertia, calculation of moment of inertia for solids of different shapes, conservation of angular momentum. Relation between angular momentum and torque.

Books Recommended:

1. Spigel, M.R. : Vector Analysis
3. Halliday, D and Resnick, R. : Physics
4. Sears, F.W., Zemansky, M.W. and Young, H.D. : University Physics
1. **Gravitation:** Kepler’s Laws, Law of universal gravitation, G and its determination, Inertial and gravitational mass, Acceleration due to gravity and its variation, Measurement of acceleration due to gravity by compound pendulum and Kater’s pendulum, Gravitational potential and field in simple cases, Gravitational potential energy.

2. **Elasticity:** Hooke’s Law, Elastic constants of isotropic solids, Poisson’s ratio and their interrelations, Internal elastic potential energy, Experimental determination of elastic constants, Torsion of a cylinder, Bending of beams, Cantilever, Variation of elasticity with temperature.

3. **Surface Tension:** Surface tension and surface energy, Adhesive and cohesive forces, Molecular theory of surface tension, Pressure on a curved membrane of uniform tension, Soap bubble, Capillarity, Angle of contact and its measurement, Determination of surface tension of water and mercury drop, Variation of surface tension with temperature.

4. **Fluid Dynamics:** General concepts of fluid flow, Streamlines, Equation of continuity, Bernoulli’s equation, Application of Bernoulli’s equation and equation of continuity. Coefficient of viscosity, Critical velocity and Reynold’s number, Poiseuille’s formula and its correction, Measurement of viscosity, Variation of viscosity with temperature.

5. **Waves:** Waves and Particles, Types of waves, Transverse and Longitudinal waves, Wavelength and frequency, The Speed of a traveling Wave, Wave speed on a stretched string, Energy and power of a traveling string wave, The principle of superposition for waves, Interference of waves, Complex waves, Standing waves and Resonance.

6. **Sound Waves:** The Speed of Sound, Propagation and speed of longitudinal waves, Traveling longitudinal waves, Standing longitudinal waves, Beats, Doppler effect.

7. **Oscillations:** Simple harmonic motion (SHM), Energy consideration in SHM, Applications of SHM, Relation between SHM and uniform circular motion, Combinations of two SHM’s, Lissajous’ figures, Two-body oscillations, Damped harmonic motion, Forced oscillations and resonance, Power and intensity of wave motion.

8. **Vibrations:** Vibrations of string, Membranes, bars, plates and air-column, Sonometer, Melde’s experiment, Rectangular and circular membranes, Transverse and longitudinal vibration of rod, Air-columns in cylindrical pipes, Organ pipes, Chladni’s figure.

Books Recommended:

1. Spigel, M.R. : Vector Analysis
3. Halliday, D and Resnick, R. : Physics
4. Sears, F.W., Zemansky, M.W. and Young, H.D. : University Physics
1. **Heat and Temperature**: Concept of temperature, Thermal equilibrium, Measurement of low and high temperatures, The Clausius & Fahrenheit scales, Thermal expansion, Gas Thermometers, Platinum resistance thermometer, Thermocouple.

2. **Kinetic Theory of Gases**: Equation of state of an ideal gas, Equipartition of energy, Translational kinetic energy, Mean free path, Maxwell’s theory of distribution of velocities, Brownian motion, Degrees of freedom & Molar Specific Heats, Van der Waals’ Equation of state, Transport phenomena.

5. **Second Law of Thermodynamics and Entropy**: The Thermodynamic temperature scale, Concept of entropy, Calculation of entropy change in reversible and irreversible processes, Entropy and second law of thermodynamics, Entropy and disorder. The Carnot engine, Efficiency of heat engines, Carnot’s theorem, Refrigerator and air-conditioner, Clausius theorem, Clausius-Clapeyron equation.

7. **Thermodynamic Functions**: Thermodynamic potentials at constant volume and pressure, Maxwell’s thermodynamic relations, Specific heat equations, Joule-Thomson effect and its applications.

Books Recommended:

2. Sears, F.W., Zemansky, M.W. and Young, H.D. : University Physics
4. Sears, F.W. : An Introduction to Thermodynamics

Paper Code: 212706
Marks: 75
Credits: 3
Class Hours: 45

Paper Title: Physics Practical-I

To perform two experiments (one from each group) each of three hours duration.

i) Experiments (3 hours each)
2 x 30 = 60

ii) Laboratory note book
10

iii) Experimental Viva-voce
05
Total marks = 75 Marks for each experiment shall be distributed as follows:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Theory</th>
<th>Data Collection and Tabulation</th>
<th>Calculation, graphs and result</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>12</td>
<td>10</td>
<td>03</td>
</tr>
</tbody>
</table>

Total marks = 30

Group – A
1. Determination of acceleration due to gravity ‘g’ by compound pendulum.
2. Determination of acceleration due to gravity ‘g’ by Kater’s pendulum.
3. Determination of Young’s modulus and rigidity modulus by Searle’s dynamic method.
5. Determination of rigidity modulus of the material of a wire by dynamic method.
6. Determination of the spring constant and effective mass of a given spiral spring and hence to calculate the rigidity modulus of the material of the spring.
7. Determination of the Young’s modulus by the flexure of a beam (bending method).
8. Determination of the moment of inertia of a fly-wheel about its axis of rotation.
9. Determination of the Young’s modulus for the material of a wire by Searle’s apparatus.
10. Determination of Surface tension of water by capillary tube method.
11. Determination of Surface tension of mercury by Quincke’s method.

Group – B
1. Determination of the specific heat of solid by method of mixture, with radiation correction.
2. Determination of the specific heat of a liquid by the method of cooling.
3. Determination of the thermal conductivity of a good conductor by Searle’s apparatus.
4. Determination of the thermal conductivity of a bad conductor by Lee’s method.
5. Determination of mechanical equivalent of heat ‘J’ with radiation correction.
6. Investigation of the variation of resistance of a copper wire with temperature and determination of its temperature coefficient of resistance.
7. Verify the laws of transverse vibration of a stretched string with a sonometer (n-λ, and n – λ/λ curves only)
8. Determination of the frequency of a tuning fork by Melde’s experiment.
9. Determination of latent heat of fusion of ice with radiation correction.
10. Determination of latent heat of condensation of steam with radiation correction.
11. Determination of density of water at various temperature by specific gravity bottle and study the variation of density with temperature from the graph.

Books Recommended:
1. Ahamed, G.U. and Uddin, M.S. : Practical Physics
3. Din, K. and Matin, M.A. : Advanced Practical Physics
4. Worsnop and Flint : Advanced Practical Physics

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>213709</th>
<th>Marks: 100</th>
<th>Credits: 4</th>
<th>Class Hours: 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>Fundamentals of Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Real Number System:** Field and order properties, Natural numbers, Integers and rational numbers,
2. **Complex Number System**: Field of Complex numbers, De Moivre's theorem and its applications.

3. **Theory of equations**: Relations between roots and coefficients, Symmetric functions of roots, Sum of the powers of roots, Synthetic division, Des Cartes’ rule of signs, Multiplicity of roots, Transformation of equations.

5. **System of Linear Equations**: System of linear equations (homogeneous and non-homogeneous) and their solutions, Gaussian elimination, Application of matrices and determinants for solving system of linear equations, Applications of system of equations in real life problems.

6. **Vector Spaces**: Euclidean n-space, Real vector spaces, Subspaces, Linear combination of vectors, Linear dependence of vectors, Basis and dimension, Linear transformations, Matrix representation of linear transformation, Kernel and image, Eigenvalues and Eigenvectors.

7. **Two-dimensional Geometry**: Transformation of coordinates, Pair of straight lines (homogeneous second degree equations, General second degree equations representing pair of straight lines, angle between pair of straight lines, Bisectors of angle between pair of straight lines), General equations of second degree (reduction to standard forms, Identifications, Properties and tracing of conics).

8. **Three-dimensional Geometry**: Three-dimensional coordinates, Distance, Direction cosines and direction ratios, Planes and straight lines, Vectors in plane and space, Algebra of vectors, Scalar and vector product, Vector equations of straight lines and planes.

Books Recommended:

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>213711</th>
<th>Marks: 50</th>
<th>Credits: 2</th>
<th>Class Hours: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>Calculus-I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Functions & their graphs**: Polynomial and rational functions, Logarithmic and exponential functions, Trigonometric functions & their inverses, Hyperbolic functions & their inverses, Combinations of such functions.
2. **Limit and continuity**: Definitions and basic theorems on limit and continuity, Limit at infinity & infinite limits, Computation of limits.
4. **Applications of Differentiation**: Mean value theorem, Maximum and minimum values of functions, Concavity and points of inflection, Optimization problems.
5. **Integration**: Anti-derivatives and indefinite integrals, Techniques of integration, Definite integration using anti-derivatives, Fundamental theorems of calculus, Basic
properties of integration, Integration by reduction.

6. **Applications of Integration:** Arc length, Plane areas, Surfaces of revolution, Volumes of solids of revolution, Volumes by cylindrical shells, Volumes by cross sections.

7. **Approximation and Series:** Taylor polynomials and series, Convergence of series, Taylor's series, Taylor's theorem and remainders, Differentiation and integration of series.

Books Recommended:

1. Howard Anton : Calculus (7th and forward editions).

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>212807</th>
<th>Marks: 100</th>
<th>Credits: 4</th>
<th>Class Hours: 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>Chemistry-I</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. **Measurements and the Scientific Method:** Measurements, units, SI units, reliability of measurements – precision and accuracy, rounding off, significant figures, significant figures in calculation, mean and median, errors, sources of errors.

2. **Structure of atom:** Atom, isotopes, Atomic masses, Mass spectroscopy, Atomic nucleus, Nuclear binding energy, Nuclear reactions –fission and Fusion reactions, Bohr atom model, Spectrum of atomic hydrogen, Dual nature of electron, Heisenberg uncertainty principle, Quantum numbers, Atomic orbitals, Aufbau principle, Pauli exclusion principle, Hund’s rule of maximum multiplicity, Electronic configuration of atoms.

3. **Periodic Table:** Periodic law, Periodic table, Electronic configurations from the periodic table, Periodic properties of the elements such as ionization energies, Electron affinity, Electro negativity, Atomic/ionic radius along a period and down a group, Diagonal relationship

4. **Chemical Bonds:** Chemical bond, Types of chemical bonds – ionic, Covalent coordination, Metallic, Hydrogen, Polar and no polar covalent bonds, Lewis dot structure, Shapes of molecules, VSEPR theory, Valence bond theory, Hybridization, &- and ð-bonding in compounds, Molecular orbital theory.

5. **Oxidation and reduction:** Redox reactions, Writing and balancing Redox reactions,

6. **States of Matter:** Comparison between solids, Liquids and gases, Changes of state, m.p. and b.p, phase transition, Phase diagram of water.

8. **Solutions:** Solubility and intermolecular forces, Solubility product, Types of concentration units, Colligative properties of solutions, Henry’s law, Nernst distribution law.

9. **Acids and Bases:** Various concepts on acids and bases, Conjugate acids and bases, Neutralization reactions acid- base strength, pH, Acid-base titrations, Acid-base indicators, Acid-base properties of salts, The common ion effect, Buffer solutions, Hard and soft acids and bases.

10. **Chemical Equilibrium:** Reversible reactions and the equilibrium state, The
equilibrium law, Reaction quotients and equilibrium constants, Calculations using Kc,
Kp, Homogeneous and heterogeneous equilibria, The principle of Le Chatelier and Brown.
11. **Hydrocarbons**: Hydrocarbons, Saturated and unsaturated hydrocarbons, Alkanes,
Alkenes, And Alkynes, Nomenclature of organic compounds-the IUPAC system
natural gas, Petroleum, Petrochemicals.
12. **Study of different classes of organic Compounds**: Alcohols, Aldehydes, Ketones,
Carboxylic Acids, Esters, Amines and Amides.

Books recommended:

4. Principles of physical chemistry, M. M. Huque and M. A Nawab, students’ publications.
5. Essentials of Physical chemistry, B.S Bahl, G.D Tuli and A Bahl, S. Chand & Co.Ltd.
7. A Level chemistry by C.W. Ramsden
8. Organic Chemistry: T Morrison and R.N Boyed,

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>212808</th>
<th>Marks: 50</th>
<th>Credits: 2</th>
<th>Class Hours: 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>Chemistry-I Practical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Preparation of FeSO₄₇H₂O, Mohr’s salt and potash alum.
2. Separation and identification of four radicals from a mixture of anions and cations The cations are
pb ²⁺, cu ²⁺, Cd ²⁺, Al ³⁺, Fe ²⁺, Fe ³⁺, Co ²⁺, Ni ²⁺, Zn ²⁺, Ca ²⁺, Ba ²⁺, Na +, K +, and NH₄ +, the anions are NO₃, CO₃²⁻, S₂⁻, SO₄²⁻, Cl⁻, Br and I⁻.
3. Standardization of NaOH solution using standard oxalic acid solution,
4. Determination of Fe²⁺ using standard permanganate solution 5.
 Iodometric determination of copper(II) using standard Na₂SO₃ solution.
5. Gravimetric determination of nickel as Ni(HDMG)₃ complex 7.
 Determination of the enthalpy change for the decomposition sodium dicarbonate into sodium
 carbonate.
6. Determination of the pH- neutralization curves of a strong acid by a strong base.
7. Investigation of the conductance behaviour of electrolytic solution and applications (acetic acid)
8. Determination of the presence of nitrogen, halogen and sulphur in organic compounds.
9. Identification of the functional groups (unsaturation, alcohol, phenol, carbonyl, aldehyde, ketone,
 carboxylic acid, aromatic amine, amide and nitro- groups) in organic compound.

Books Recommended:

 Green & Co. Ltd.
 Green & Co. Ltd.
3. Practical physical chemistry, A Faraday.
1. **Descriptive Statistics:** Statistics-Its nature and some important use, Qualitative and quantitative data, Classification, Tabulation and frequency distribution, Graphical representation of data, Measure of location, Measures of Dispersion, Skewness and Kurtosis, Mathematical relationship among different measures of location, dispersion, Skewness and kurtosis.

2. **Bivariate Data:** Correlation coefficient, Correlation analysis, The purpose and uses of regression analysis, Simple regression and methods of least squares and estimation of parameters, Correlation ratio, Rank correlation, Partial and multiple correlation.

3. **Elementary Probability:** Meaning of Probability, Classical and empirical definitions of Probability, Axiomatic approach of defining probability, Event, Sample space and simple problems on probability, Addition rule, Conditional probability, Multiplication rule and Bayes theorems, The concept of a random variables, Probability function and probability density function, Joint probability function. Marginal and conditional distributions, Statistical independence, Expected value and related theorems, Moment generating function, Common probability distributions, Binomial, Poisson and Normal.

4. **Index Number:** Concept of an index number and problems in the construction of index number, Types of indices (Price, Quantity, Value and cost of living indices) and their uses, Tests for index numbers.

5. **Time Series analysis:** Elements of time-series analysis, Measurement of trend by moving average, By least square method, Trend curve, Determination of seasonal indices, Cyclical movements.

6. **Numerical Mathematics:** Differences of a polynomial, Finite difference operator, Difference table, Newton’s formula and starling’s central difference formula, Inverse interpolation, Numerical integration.

Books Recommended:

10. Freeman H.: Acturial, Mathematics Vols; I and II

Paper Code: 213607
Marks: 100
Credits: 4
Class Hours: 60

Paper Title: Introduction to Statistics

Paper Code: 213608
Marks: 50
Credits: 2
Class Hours: 30

Paper Title: Statistics Practical-I
Condensation and tabulation of data, Graphical representation of data, Measures of location, Dispersion, Moments, Skewness and Kurtosis, measures of correlation coefficient, Rank correlation, Fitting of simple regression lines, Fitting of Binomial, Normal and Poisson’s distributions, Finding trend values and seasonal variation from time series data by different methods, Calculation of Index numbers and test of index number, Use of Newton’s forward and backward formula, Solution of numerical integration.

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>211501</th>
<th>Marks: 100</th>
<th>Credits: 4</th>
<th>Class Hours: 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper Title:</td>
<td>History of the Emergence of Independent Bangladesh</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

সাধারণ বাংলাদেশের অভ্যুদয়ের ইতিহাস

১। দেশ ও জনপোষিতির পরিচয়
 ক) ভূ-প্রকৃতির বৈশিষ্ট্য ও প্রভাব
 খ) মৃত্যুতাত্ত্বিক গঠন
 গ) ভাষা
 ঘ) সংস্কৃতির সমস্যাবাদিতা ও ধর্মীয় সহনশীলতা
 ২য়) অতিপ্রস্তুত বাংলার পরিপ্রেক্ষিতে তৎকালীন পূর্ববঙ্গ ও বর্তমান বাংলাদেশের ধর্মীয় সত্তা

২। অত্যন্ত সাধারণ বাংলা রাষ্ট্র গঠনের প্রয়োগ ও উপনৈতিক বিষয়, ১৯৪৭
 ক) ঋণনবিশিষ্ট শাসন আমলে সাম্রাজ্যবিরুদ্ধ উভয় ও বিস্তার
 খ) লাহোর প্রস্তুত, ১৯৪০
 গ) অত্যন্ত সাধারণ বাংলা রাষ্ট্র গঠনের উদ্যোগ, ১৯৪৭ ও পরিণতি
 ২য়) পাকিস্তান সৃষ্টি, ১৯৪৭

৩। পাকিস্তানের রাষ্ট্রীয় কাঠামো ও বৈষম্য
 ক) কেন্দ্রীয় ও প্রাদেশিক কাঠামো
 খ) সামরিক ও বেসামরিক আমলাতপত্রের প্রভাব
 গ) অর্থনৈতিক, সামাজিক ও সাংস্কৃতিক বৈষম্য

৪। ভাষা আমলনাম ও বাঙালির আত্মপরিচয় প্রতিষ্ঠা
 ক) মুসলিম লীগের শাসন ও গণতাত্ত্বিক রাজনীতির সংগ্রাম
 খ) আওয়ামী লীগের প্রতিষ্ঠা, ১৯৪৯
 গ) ভাষা আমলনাম: পঞ্চভাষা ও ঘটনা প্রবাহ
 ২য়) হিন্দু-ফারসি-সংহারাওয়ারীর যুদ্ধজীবন, ১৯৫৪ সালের নির্বাচন ও পরিণতি

৫। সামরিক শাসন: আইইউ খান ও ইয়াহিয়া খানের শাসনামল (১৯৫৮-৭১)
 ক) সামরিক শাসনের সংরক্ষণ ও বৈশিষ্ট্য
 খ) আইইউ খানের ক্ষমতা দখল ও শাসনের বৈশিষ্ট্য (রাজনৈতিক নিপিতিকন, মৌলিক গণতন্ত্র, ধর্মীয় রাজনীতিক ব্যবস্থা)
 ২য়) আইইউ খানের পতন ও ইয়াহিয়া খানের শাসন, এক ইউনিট বিভক্তিকরণ, সাবজেক্টিভ ভোটাধিকার, এলএফও (Legal Framework Order)
Introduction: Scope and description of the emergence of Independent Bangladesh. Writing on this topic.

1. Description of the country and its people.
 a. Geographical features and their influence.
 b. Ethnic composition.
c. Language.
d. Cultural syncretism and religious tolerance.
e. Distinctive identity of Bangladesh in the context of undivided Bangladesh.

a. Rise of communalism under the colonial rule, Lahore Resolution 1940.
b. The proposal of Suhrawardi and Sarat Bose for undivided Bengal: consequences
c. The creation of Pakistan 1947.

3. Pakistan: Structure of the state and disparity.
a. Central and provincial structure.
b. Influence of Military and Civil bureaucracy.
C. Economic, social and cultural disparity

4. Language Movement and quest for Bengali identity
a. Misrule by Muslim League and Struggle for democratic politics.
b. The Language Movement: context and phases.

a. Definition of military rules and its characteristics.
b. Ayub Khan’s rise to power and characteristics of his rule (Political repression, Basic democracy, Islamisation)
c. Fall of Ayub Khan and Yahia Khan’s rule (Abolition of one unit, universal suffrage, the Legal Framework Order)

a. Resistance against cultural aggression and resurgence of Bengali culture.
b. Sheikh Mujibur Rahman and the six point movement
c. Reactions: Importance and significance
d. The Agortola Case 1968.

7. The mass-upsurge of 1969 and 11 point movement: background, programme and significance.

8. Election of 1970 and the Declaration of Independence by Bangobondhu
a. Election result and centre’s refusal to comply
b. The non-co-operation movement, the 7th March, Address, Operation Searchlight
c. Declaration of Independence by Bangobondhu and his arrest

9. The war of Liberation 1971
 a. Genocide, repression of women, refugees
 b. Formation of Bangladesh government and proclamation of Independence
 c. The spontaneous early resistance and subsequent organized resistance (Mukti Fouz, Mukti Bahini, guerillas and the frontal warfare)
 d. Publicity Campaign in the war of Liberation (Shadhin Bangla Betar Kendra, the Campaigns abroad and formation of public opinion)
 e. Contribution of students, women and the masses (Peoples war)
 f. The role of super powers and the Muslim states in the Liberation war.
 g. The Anti-liberation activities of the occupation army, the Peace Committee, Al-Badar, Al-Shams, Rajakars, pro Pakistan political parties and Pakistani Collaborators, killing of the intellectuals.
 h. Trial of Bangabondhu and reaction of the World Community.
 i. The contribution of India in the Liberation War
 j. Formation of joint command and the Victory
 k. The overall contribution of Bangabondhu in the Independence struggle.

10. The Bangabondhu Regime 1972-1975
 a. Homecoming
 b. Making of the constitution
 c. Reconstruction of the war ravaged country
 d. The murder of Bangabondhu and his family and the ideological turn-around.

সহায়ক গ্রন্থ
 ১. নীহার রঘুন রায়, বাঙালীর ইতিহাস, দে জ পাবলিশিং, কলকাতা ১৪০২ সাল।
 ২. সালাহু উদ্দিন আহমেদ ও অন্যান্য (সম্পাদিত), বাংলাদেশের মুক্তি সংগ্রামের ইতিহাস ১৯৪৭-১৯৭১, আগামী প্রকাশনী, ঢাকা ২০০২।
 ৩. সিরাজুল ইসলাম (সম্পাদিত), বাংলাদেশের ইতিহাস ১৭০৪-১৯৭১, ৩ খণ্ড, এশিয়াটিক সোসাইটি অব বাংলাদেশ, ঢাকা ১৯৯২।
 ৪. ড. হারমুন-রুর-রশিদ, বাংলাদেশ: রাজনীতি, সরকার ও শাসনতাত্ত্বিক উন্নয়ন ১৭৫৭-২০০০, নিউ এজ পাবলিকেশন্স, ঢাকা ২০০১।
 ৫. ড. হারমুন-রুর-রশিদ, বাঙালির রাষ্ট্রচিত্ত ও বাংলাদেশের অভ্যুদয়, আগামী প্রকাশনী, ঢাকা ২০০৩।
 ৬. ড. হারমুন-রুর-রশিদ, বঙ্গবন্ধুর অসামান্য আত্মজীবনী পুনর্গঠন, দি ইউনিভার্সাল প্রেস লিমিটেড, ঢাকা ২০১৩।
৭. ড. আতফুল হাই শিবলী ও ড.মোঃ মাহবুব রহমান, বাংলাদেশের সাংবিধানিক ইতিহাস ১৭৭৩-১৯৭২, সূর্য প্রকাশন, ঢাকা ২০১৩।

৮. মুনতাসির মামুন ও জয়ন্ত কুমার রায়, বাংলাদেশের সিভিল সমাজ প্রতিষ্ঠার সঙ্গম, অবসর, ঢাকা ২০০৬।

৯. আহিতুর রহমান, অসমস্ত অনেকের দিনগুলি: মুজিবুর্রহমনের প্রতি পূর্ব, সাহিত্য প্রকাশ, ঢাকা ১৯৯৮।

১০. ড. মোঃ মাহবুব রহমান, বাংলাদেশের ইতিহাস, ১৯০৫-৪৭, তথ্যলিপি, ঢাকা ২০১১।

১১. ড. মোঃ মাহবুব রহমান, বাংলাদেশের ইতিহাস, ১৯৪৭-১৯৭১, সময় প্রকাশন, ঢাকা ২০১২।

১২. সৈয়দ আনোয়ার হোসেন, বাংলাদেশের স্বাধীনতা যুদ্ধে পরাশর্তির ভূমিকা, ডানা প্রকাশনী, ঢাকা ১৯৮২।

১৩. আলুন মাল আবদুল মুহিত, বাংলাদেশ: জাতিসংঘের উড়ব, সাহিত্য প্রকাশ, ঢাকা ২০০০।

১৪. শেখ মুজিবুর রহমান, অসমস্ত আত্মজীবনী, দি ইউনিভার্সিটি প্রেস লিমিটেড, ঢাকা ২০১২।

১৫. সীরাজ উদ্দিন আহমেদ, একাতারের মুজিবুর: স্বাধীন বাংলাদেশের অভূতপূর্ব, ইসলামিক ফাউন্ডেশন, ঢাকা ২০১১।

১৬. জয়ন্ত কুমার রায়, বাংলাদেশের রাজনৈতিক ইতিহাস, সূর্য প্রকাশন, ঢাকা ২০১০।

১৯. Talukder Maniruzzaman, Radical Politics and the Emergence of Bangladesh, Mowla, Brothers, Dhaka 2003.

২০. মেসবাহ কামাল ও ইশারা চত্রবর্তী, নাগেলের কৃষ্ক বিদ্রোহ, সমকালীন রাজনীতি ও ইলা মিহা, উত্তর, ঢাকা ২০০৮।

২১. মেসবাহ কামাল, আসাদ ও উনস্তরের গণঅভ্যাস, বিবর্তন, ঢাকা ১৯৮৬।